Manual de instruções | Durômetro Portátil Digital - 400.130 PLUS

Leia cuidadosamente as instruções antes de utilizar o equipamento.

DIGIMESS

Contato: sac@digimess.com.br

Este produto possuiu 1 ano de garantia contra defeitos de fabricação. Fabricado na China. Importado por Digimess Instrumentos de Precisão Ltda. CNPJ 05.396.034/0001-60

Índice

1.	Introdução	03
2.	Estrutura e princípios de teste	06
3.	Especificações técnicas	07
4.	Medição	09
5.	Lembretes especiais	11
6.	Procedimentos detalhados de medição	11
7.	Manutenção	26
8.	Transporte e armazenagem	27
9.	Partes fora da garantia	27

1. Introdução

1.1. Características

- > Display LCD de matriz de pontos 128x32.
- > Interface de comunicação USB.
- > Direção de impacto automaticamente identificada.
- > Memória para 270 médias em 9 arquivos.
- > Podem ser pré-ajustados o limite de dureza superior e inferior.
- > Iluminação extra do display para ser usada quando houver luz ambiente fraca.
- > Com indicador de carga da bateria no display LCD, o operador pode observar a extensão de carga a qualquer momento.
- > Desliga automaticamente após período sem uso.
- > Função de calibração eletrônica.
- > Bateria AAA 1,5V (2 peças)
- O software para PC (opcional) pode ser instalado de acordo com a necessidade do usuário.

1.2. Aplicação principal e faixa de medição

1.2.1. Aplicação principal

- > Testes em equipamentos montados e peças instaladas permanentemente.
- > Cavidade de matriz dos moldes.
- > Peças pesadas.
- > Espaço estreito para teste onde é instalada a peça de trabalho.
- > Mancais e outras peças.
- > Casos que requerem resultados de prova com registro original normalizado.
- > Identificação rápida no recebimento do tipo de material adquirido.
- > Testes rápidos em posições diversas de medição em multipontos para peças robustas.

1.2.2. Capacidade do teste

Tabela 1

Material	Escala de dureza	Capacidade de medição
Aço e aço carbono	HRC	20,0~68,4
[Cast Steel]	HRB	38,4~99,8
	HB	81~654
	HV	81~955
	HS	32,5~99,5
Aço ferramenta	HRC	20,4~67,1
[CWT. Steel]	HV	80~898
Aço inoxidável	HRB	46,5~101,7
[STAIN. Steel]	НВ	85~655
	HV	85~802
Ferro fundido cinzento - [GC. Iron]	HB	93~334
Ferro fundido nodular - [NC. Iron]	HB	131~387
Ligas de alumínio	HB	19~164
[Cast Alumin]	HRB	23,8~84,6
Ligas de cobre-zinco	HB	40~173
[Copper-Zinc]	HRB	13,5~95,3
Ligas de cobre-alumínio - [Copper-Alumin]	HB	60~290
Cobre - [Wrought Copper]	HB	45~315

1.3. Configuração

1.3.1. Configuração padrão

Unidade principal	01
Bateria AAA 1,5V	02
Anel de apoio pequeno	01
Escova	01
Bloco padrão de dureza	01
Cabo de comunicação USB	

1.3.2. Configuração opcional

Outros anéis de apoio não convencionais. Verificar tabela 2.

Tabela 2 - Apoios especiais

No.	Código	Tipo	Desenho	Observações
1	400.130-16	Z10-15		Para superfície externa cilíndrica R10~R15
2	400.130-17	Z14.5-30		Para superfície externa cilíndrica R14,5~R30
3	400.130-18	Z25-50		Para superfície externa cilíndrica R25~R50
4	400.130-13	HZ11-13		Para superfície interna cilíndrica R11~R13
5	400.130-14	HZ12.5-17		Para superfície interna cilíndrica R12,5~R17
6	400.130-15	HZ16.5-30		Para superfície interna cilíndrica R16,5~R30
7	400.130-19	K10-15		Para superfície externa esférica SR10~SR15
8	400.130-20	K14.5-30		Para superfície externa esférica SR14,5~SR30
9	400.130-21	HK11-13		Para superfície interna esférica SR11~SR13
10	400.130-22	HK12.5-17		Para superfície interna esférica SR12,5~SR17
11	400.130-23	HK16.5-30		Para superfície interna esférica SR16,5~SR30
12	400.130-24	UN		Para superfície externa cilíndrica, raio ajustável R10∼∞

1.4. Condições de funcionamento

- > Temperatura ambiente para funcionamento: $0^{\circ}C \sim 40^{\circ}C$;
- > Umidade relativa para funcionamento: \leq 90%;
- > No ambiente ao redor não deverá ter vibração, campo magnético forte e poeira corrosiva.

2. Estrutura e princípios de teste

2.1. Estrutura

- 1) Anel de apoio
- 2) Cavidade côncava de apoio
- 3) Tecla Liga/Desliga
- 4) Display LCD
- 5) Tecla para cima
- 6) Tecla Enter
- 7) Tecla para baixo
- 8) Dispositivo de gatilho

- 9) Corpo Plástico
- 10) Capa da bobina
- 11) Parafuso de fixação
- 12) Plaqueta informativa
- 13) Tampa da bateria
- 14) Botão de disparo
- 15) Saída USB
- 16) Alojamento da bateria

2.2. Princípios de teste

O corpo de impacto é disparado contra a superfície a ser testada. A medição é feita através da velocidade do retorno do corpo de impacto quando o mesmo está passando a uma distância de 1mm da superfície. Os valores da medição derivados das velocidades de impacto e repercussão são processados nos valores de dureza pelo equipamento seguindo o cálculo abaixo:

$HL = 1000 \times Vb/Va$

Sendo:

HL - Valor de dureza Leeb Vb - Velocidade de repercussão do corpo de impacto Va - Velocidade de impacto do corpo de impacto.

3. Especificações

3.1. Especificações técnicas

>	Energia de impacto	11mJ
>	Peso do corpo de impacto	5,5g
>	Dureza da esfera	> 1600HV
>	Diâmetro da esfera	3mm
>	Material da esfera	Carboneto de tungstênio
>	Dureza máxima da peça medida	940HV
>	Rugosídade máxima da peça medida	1,5µm em Ra
Peso	mínimo da peça medida	
>	Para medição direta	> 5kg
>	Com suporte estável	2~5kg
>	Acoplada em suporte estável	0,05~2kg
Espe	ssura mínima da peça medida	
>	Para medição direta	> 30mm
>	Com suporte estável	> 20mm
>	Acoplada em suporte estável	> 10mm
>	Espessura mínima de camada de dureza	0,8mm

>	Capacidade de medição	170~960HLD
>	Direção de medição	360°
>	Escalas disponíveis	HL, HB, HRB, HRC, HV, HS
>	Resolução do display de LCD	128x32
>	Memória	270 médias em 9 arquivos
>	Limites de tolerância	Iguais a capacidade do aparelho
>	Alimentação	2 baterias AAA - 1,5V
>	Tempo de uso continuo	150 horas sem a luz de fundo acionada
>	Interface de comunicação	USB 2.0
>	Dimensões	155 x 55 x 25mm
>	Peso	166g

3.2. Tamanho das penetrações

Faixa de dureza de 300HV

>	Diâmetro	0,54mm		
>	Profundidade	0,024mm		
Faixa	de dureza de 600HV			
>	Diâmetro	0,54mm		
>	Profundidade	0,017mm		
Faixa	de dureza de 800HV			
>	Diâmetro	0 35mm		
>	Profundidade	0,010mm		
		- ,		
3.3.	Exatidão e repetibilidade			
Faixa de dureza de 760 \pm 30HLD				
>	Exatidão	± 6HLD		
>	Repetibilidade	10HLD		
Faixa	de dureza de 600HV			

>	Exatidão	± 10HLD
>	Repetibilidade	10HLD

4. Medição

4.1. Preparação e inspeção antes da medição

4.1.1. Preparação da superfície da peça a ser medida

A preparação para a superfície da peça de trabalho deve obedecer a algumas exigências importantes especificadas no capítulo anterior.

> Durante a preparação da amostra, deve ser evitado o máximo possível seu super aquecimento ou resfriamento evitando alteração em sua dureza original.

> Se a superfície a ser testada estiver muito rugosa, poderá acarretar em um valor irreal. Sendo assim, a superfície da amostra deve ser plana, lisa e não estar oleosa.

> Superfície curva: é melhor que a superfície para medição da peça de trabalho seja o mais plana possível. Quando o raio de curvatura (R) da superfície curva a ser testada é menor que 30mm deve ser usado o anel de apoio pequeno (fornecido junto ao instrumento) ou um anel de especial (conforme tabela de apoios especiais).

> Sustentação da peça a ser medida: a sustentação não é necessária para a amostra que possuir espessura e massa considerável. A amostra com peso médio deve ser colocada sobre uma superfície plana e firme, e também deve estar estável e sem qualquer balanço.

> É necessário que a amostra tenha espessura suficiente, e a espessura mínima deve estar de acordo com as especificações do capítulo anterior.

> Quanto a peça a ser medida possuir camada de superfície temperada, a profundidade da camada temperada deve obedecer às especificações do capítulo anterior.

> Acoplamento:

A amostra com peso leve deve estar firmemente acoplada ao suporte; as superfícies acopladas devem ser planas, lisas e o agente de acoplamento pode ser graxa ou vaselina. A direção de medição deve sempre estar na vertical quando se trabalhar com superfície acoplada.

Quando a peça testada for muito longa e flexível (uma chapa por exemplo), é possível que ocorra deformação e instabilidade independente da quantidade suficiente de massa e espessura, resultando em imprecisão, portanto a parte detrás do ponto de medição deve ser reforçado e suportado.

> Não usar suportes magnéticos.

4.1.2. Ajuste dos parâmetros de medição

Procedimentos específicos para ajuste, consultar item 6.8.

4.2. Prova

> Deve ser usado o bloco de dureza HLD (fornecido com o instrumento) para verificar o durômetro antes da medição, e o erro do valor da leitura e repetitividade não devem ser maiores que o especificado no capítulo anterior.

> Caso o desvio seja maior que a tolerância do instrumento, deve ser realizada a calibração eletrônica, conforme mostrado no item 6.11.

4.2.1. Engatilhando

> Apoie o anel de apoio contra a superfície da peça a ser medida com firmeza, sem tremular a mão. Pode ser usada a cavidade côncava no corpo do aparelho para maior firmeza. Puxe então o gatilho para baixo, puxando pela parte frontal e pela parte posterior do aparelho.

4.2.1. Testando

> Aperte o botão na parte de cima do aparelho (ao lado da saída USB) para o disparo. Neste momento é muito importante a mão do operador estar completamente estável.

- > Faça quantos testes forem necessários para se obter uma média da peça.
- > A distância entre 2 testes deverá ser de pelo menos 3mm.
- A distância entre 1 teste e a lateral da peça deverá ser pelo menos 5mm.

4.2.2. Resultados dos testes

> O valor de dureza será exibido na frente das letras HL (Leeb Hardness - Dureza Leeb), e o tipo de dispositivo de impacto será exibido após as letras HL. Por exemplo, 700 HLD mostra que a dureza L é 700 mediante a medição feita pelo dispositivo de impacto tipo D.

Para outros tipos de dureza que foram convertidos do valor de dureza L, o símbolo de dureza correspondente deveria ser adicionado à frente do símbolo de dureza L. Por exemplo, 400 HV HLD mostra que o valor de dureza Vickers é 400, que foi convertido do valor de dureza L medido pelo dispositivo de impacto tipo D. De costume não se usa esta nomenclatura, se tratando apenas por 400 HV neste caso.

Nota: Os valores HL que foram medidos usando outros dispositivos de impacto são nomeados diferentemente. Por exemplo: 700 HLD \neq 700 HLC.

5. Lembretes especiais

> Em condições normais, o aparelho só vai adicionar o valor da medição em sua memória quando forem feitas todas as medições selecionadas para calculo do valor médio.

> Se você desejar jogar o valor para a memória antes do término de todas as medições, poderá entrar na interface do menu principal e pressionar a função **[Cal. Average]**.

> Quando usada a função [Cal. Average], as funções [Auto Save] e [Auto Trans.] não funcionarão.

> Nem todas escalas de dureza podem ser utilizadas para todos os materiais. Assim, a escala de dureza irá voltar automaticamente para HL quando o material for modificado. Recomendamos então primeiro determinar o [Material] e posteriormente selecionar a escala de dureza [Hardness Scale].

6. Procedimentos detalhados de medição

6.1. Início

> Pressione a tecla [①] para ligar o instrumento, a seguinte interface será exibida:

> O aparelho entrará na interface do display principal depois que ligar, conforme a próxima figura.

Valor medido: medição atual realizada (sem o indicador da média da medição) ou média do valor atual (com o indicador da média da medição). Mostrará que o valor é superior à faixa de dureza de determinada quando é exibido 1 e mostrará que o valor é inferior à faixa de dureza de determinada quando é exibido 1.

Quantidade de medições realizadas: será exibida a quantidade de medições finalizadas até atingir o valor determinado para o cálculo da média.

Indicador do valor médio calculado: a média das medições será exibida quando for concluída a quantidade ajustada de testes.

Escala de dureza: escala de dureza ajustada para medição.

Direção do impacto: direção ajustada a qual será usado o dispositivo de impacto.

Informação da carga da bateria: exibição da carga de bateria restante.

Indicadores de tolerância: será mostrado [\diamondsuit] no display quando a medição estiver dentro da tolerância ajustada. Será mostrada [\diamondsuit] no display quando a medição estiver acima da tolerância ajustada. Será mostrada [\diamondsuit] no display quando a medição estiver abaixo da tolerância ajustada.

6.2. Procedimentos de medição

A medição deve ser realizada no estado da interface do display conforme mostrado no item anterior e o valor atual testado será exibido logo que uma medição for finalizada. A contagem da quantidade de medições para média adicionará 1 por teste realizado. As indicações de tolerância superior ou inferior se preencherão caso os limites forem ultrapassados. O valor da média das medições aparecerá quando o número de medições para a média ajustado for concluído. A média aparecerá automaticamente após 2 segundos do valor da última medição ser mostrada.

6.3. Operação do teclado

> Pressionando as teclas [[^]] ou [[^]] você poderá navegar e visualizar todas as medições médias realizadas até o momento, antes que seja calculada a média.

> Pressionado a tecla [←] entrará no menu de opções.

6.4. Desligando

> Pressione a tecla [①] para desligar o aparelho.

6.5. Estrutura do menu de opções

Após pressionar a tecla [←] no display principal e entrar no menu de opções, você encontrará as seguintes funções:

> Sempre que for pressionada a função [Exit] o display retornará para o display principal.

> O display trabalha de forma circular. Sempre que pressionar as teclas [$\$] ou [$\$] no último ou no primeiro item, ele retorna para o primeiro ou para o último item, respectivamente.

6.6. Funções básicas

> Pressionado a tecla [] no display principal você entrará no menu de opções.

Save Average Delete Single Cal. Average Memory Manager Backlight ON/OFF Test Set System Set About Software Exit > Pressione as teclas [$\$] ou [$\$] para mover o cursor até o item desejado e então pressione a tecla [\leftarrow] para confirmar.

Save Average: Grava na memória o valor médio de medição atual. O valor não pode ser salvo na memória antes de ser atingido o número de medições para calculo da média.

Delete Single: Deleta um valor que foi medido de forma errada para que possa ser repetido.

Cal. Average: Mostra o valor médio imediatamente, antes que o número determinado de medições seja alcançado.

Backlight ON/OFF: Quando o display mostrar [Backlight On] você deverá apertar a tecla [↓] e estará ligando a luz de fundo. Quando o display mostrar [Backlight Off] você deverá apertar a tecla [↓] e estará desligando a luz de fundo.

6.7. Controle da memória

O instrumento possui 9 arquivos e cada um deles consegue armazenar 30 médias de > valores medidos. Quando tentamos armazenar uma média de medição em um arquivo cheio, o display vai mostrar [This File Full]. Então precisamos alterar a configuração para gravar em outro arquivo.

Pressionado a tecla [←] no display principal você entrará no menu de opções. >

Pressione as teclas [^{*}] ou [^{*}] para mover o cursor até o item [Memory Manager] e então pressione a tecla [←] para confirmar.

15

[⊷] 1 File No.: [⊷] Confirm Delete YES NO

>

6.7.1. Visualizar arquivo

Use esta função para visualizar todos as médias gravadas em todos os arquivos da memória.

Dentro do menu de controle da memória, pressione as teclas [[^]] ou [[^]] para mover o cursor até [View File] e então pressione a tecla [←] para confirmar.

Pressione as teclas $[\]$ ou $[\]$ para selecionar o arquivo que deseja visualizar (de 1~9) e então pressione a tecla [←] para confirmar.

Pressione as teclas [$\$] ou [$\$] para ir alternando entre as páginas e então pressione a tecla [\leftarrow] para retornar ao display principal.

6.7.2. Deletar arquivo

Esta função deleta todos as médias gravadas em um arquivo da > memória.

Dentro do menu de controle da memória, pressione as teclas > [[^]] ou [[^]] para mover o cursor até [Delete File] e então pressione a tecla [←] para confirmar.

Pressione as teclas [N] ou [N] para selecionar o arquivo que deseja deletar (de 1~9) e então pressione a tecla [←] para confirmar.

Pressione as teclas [^{*}] ou [^{*}] para escolher entre SIM ou NÃO e > então pressione a tecla [←] para confirmar e retornar ao display principal.

6.7.3. Selecionar arquivo salvo

> Esta função determina qual arquivo (de 1~9) será usado para gravar as medições na memória.

 Dentro do menu de controle da memória, pressione as teclas
[∧] ou [∧] para mover o cursor até [Select Save File] e então pressione a tecla [←] para confirmar.

> Pressione as teclas [[∧]] ou [[∨]] para selecionar o arquivo que deseja que as medições sejam gravadas (de 1~9) e então pressione a tecla [←] para confirmar e retornar ao display principal.

View File Delete File Select Save File Transfer Exit

6.7.4. Transferir dados

> Esta função permite a transferência das medições da memória via comunicação USB. Detalhes no capítulo 6.14.

Dentro do menu de controle da memória, pressione as teclas
[^] ou [^] para mover o cursor até [Transfer] e então pressione a tecla
[4] para confirmar e retornar ao display principal.

6.8. Ajustes da medição

- Neste menu serão ajustados todos os aspectos para ser realizada a medição. >
- Pressionado a tecla [←] no display principal você entrará no menu de opções. >

>

>

Save Average Delete Single Cal. Average Memory Manager Backlight ON/OFF Test Set System Set About Software Exit [⊷]

Impact Direc. Average Material Hardness Scale Tolerance Limit Exit

Pressione as teclas [^{*}] ou [^y] para mover o cursor até o item [Test Set] e então pressione a tecla [←] para confirmar.

Dentro do menu de ajustes de medição, pressione as teclas [⁵] ou [1] para mover o cursor até o item desejado e então pressione a tecla [←] para confirmar.

6.8.1. Direção de impacto

> Esta função determina qual a direção que será feita a medição (90°, 45°, 0°, -45°, -90° e Automático)

Dentro do menu de ajustes da medição, pressione as teclas [^{*}]
ou [⁵] para mover o cursor até [Impact Direc.] e então pressione a tecla
[4] para confirmar.

> Pressione as teclas [$\$] ou [$\$] para selecionar a posição desejada e então pressione a tecla [\leftarrow] para confirmar e retornar ao display principal.

 Se a posição automática for selecionada o instrumento vai identificar a posição automaticamente, exceto para as posições -45° e -90° que ele vai solicitar uma confirmação após a medição ser efetuada.

6.8.2. Média

> O número de medições para cálculo da média pode ser selecionado entre 1 até 10 vezes.

 Após todas as medições terem sido realizadas o display mostrará então automaticamente o cálculo da média, indicando [AVE] no display.

Dentro do menu de ajustes da medição, pressione as teclas [^{*}]
ou [⁵] para mover o cursor até [Average] e então pressione a tecla [⁴]
para confirmar.

Pressione as teclas [^K] ou [^N] para selecionar o número de medições e então pressione a tecla [←] para confirmar e retornar ao display principal. Impact Direc.

Average

Material

Hardness Scale Tolerance Limit Exit

(Cast) Steel

CWT. Steel

STAIN. Steel

GC. Iron

- NC. Iron
- Cast Alumin
- Copper-Zinc
- Copper-Alumin
- Wrought Copper

Tolerance Limit Exit

6.8.3. Material

> Esta função determina qual o material da peça que será testada. A tradução dos materiais você pode encontrar na página 4 deste manual.

> Dentro do menu de ajustes da medição, pressione as teclas [[∧]]
ou [[∨]] para mover o cursor até [Material] e então pressione a tecla [[↓]]
para confirmar.

Pressione as teclas [[∧]] ou [[∨]] para selecionar o material desejado e então pressione a tecla [←] para confirmar e retornar ao display principal.

> Após a escolha do material será necessário escolher novamente a escala de dureza, pois ela voltará para a escala HL.

6.8.4. Escala de dureza

> Esta função determina qual a escala de dureza em que o teste será realizado.

> Dentro do menu de ajustes da medição, pressione as teclas [[∧]]
ou [[√]] para mover o cursor até [Hardness Scale] e então pressione a tecla [[↓]] para confirmar.

Pressione as teclas [[∧]] ou [[∨]] para selecionar a escala desejada
e então pressione a tecla [←] para confirmar e retornar ao display
principal.

> Após a escolha do material será necessário escolher novamente a escala de dureza, pois ela voltará para a escala HL.

6.8.5. Limites de tolerância

> Esta função determina limites de tolerância inferior e superior para sua medição. Assim o display acusará quando os limites forem excedidos.

> Dentro do menu de ajustes da medição, pressione as teclas [\]
ou [\] para mover o cursor até [Tolerance Limit] e então pressione a tecla [↓] para confirmar.

Pressione as teclas [\uparrow] ou [\checkmark] para aumentar ou diminuir os valores e então pressione a tecla [\leftarrow] para confirmar confirmar o dígito e passar ao próximo. Ao pressionar a tecla [\leftarrow] confirmando o último dígito o instrumento vai retornar ao display principal.

> Caso sejam ajustados limites fora da tolerância do instrumento ele dará um aviso e retornará o display para os limites máximos inferior e superior.

6.9. Ajustes do sistema

Neste menu serão ajustadas as configurações do aparelho. >

>

Pressionado a tecla [←] no display principal você entrará no menu de opções. >

Save Average **Delete Single** Cal. Average Memory Manager Backlight ON/OFF Test Set System Set About Software Exit [⊷] Auto Save On/Off

Auto Delete On/Off Auto Trans. On/Off LCD Brightness Exit

Pressione as teclas [^K] ou [^V] para mover o cursor até o item [Test Set] e então pressione a tecla [←] para confirmar.

Dentro do menu de ajustes do sistema, pressione as teclas [^{*}] ou [1] para mover o cursor até o item desejado e então pressione a tecla [←] para confirmar.

Auto Save ON/OFF: Quando o display mostrar [Auto Save On] você deverá apertar a tecla [←] e estará ligando a gravação automática na memória. Quando o display mostrar [Auto Save Off] você deverá apertar a tecla [←] e estará desligando a gravação automática na memória.

Auto Delete ON/OFF: Quando o display mostrar [Auto Delete On] você deverá apertar a tecla [] e estará ligando a exclusão automática de valores que não estejam dentro dos limites ajustados na tolerância. Quando o display mostrar [Auto Save Off] você deverá apertar a tecla [] e estará desligando a exclusão automática de valores que não estejam dentro dos limites ajustados na tolerância.

Auto Trans. ON/OFF: Quando o display mostrar [Auto Trans. On] você deverá apertar a tecla [←] e estará ligando a transferência automática dos dados via USB para o software. Quando o display mostrar [Auto Trans. Off] você deverá apertar a tecla [←] e estará desligando a transferência automática dos dados via USB para o software. Detalhes no capítulo 6.14.

Dark: Press $[\Sigma]$

6.9.1. Ajuste de brilho do display LCD

> Esta função ajusta o nível de intensidade de brilho no display LCD.

 > Dentro do menu de ajustes do sistema, pressione as teclas [[∧]]
ou [[√]] para mover o cursor até [LCD Brightness] e então pressione a tecla [←] para confirmar.

 Pressione as teclas [[∧]] ou [[∨]] para clarear ou escurecer o display e então pressione a tecla [←] para confirmar e retornar ao display principal.

6.10. Informações do softaware interno do aparelho

- > Esta tela mostrará a versão do software interno do aparelho.
- > Pressionado a tecla [←] no display principal você entrará no menu de opções.

6.11. Calibração Eletrônica

Este durômetro possui um método de auto-calibração eletrônica que pode ser feito pelo > operador sempre que necessário. O processo deverá ser feito utilizando o bloco padrão de dureza HL que o acompanha.

São situações que necessitam que seja feita a calibração eletrônica:

Em sua utilização pela primeira vez. >

Após ficar parado por um longo tempo sem uso. >

>

Quando estiver com muito tempo de uso e se perceber que começa a ter desvios nas > medições por desgaste da esfera de impacto.

Sempre que se houver uma dúvida quanto aos resultados obtidos. >

Para acessar a interface da calibração eletrônica deve-se pressionar as seguintes teclas > com o aparelho desligado:

Pressione e mantenha pressionadas as teclas [$\$] e [$\$]. Com as duas teclas ainda pressionadas aperte e solte a a tecla [\bigcirc].

A direção de impacto deve estar sempre previamente ajustada para 90º. 上 >

Após entrar com a sequência de teclas, o display mostrará como na figura ao lado, solicitando para que sejam feitas 5 medições no bloco padrão de dureza HL.

Depois das 5 medições no bloco padrão de dureza será exibida > a média alcançada [Average]. Abaixo da média estará o campo [Nominal], onde deverá ser inserido o valor da dureza do bloco padrão, que deverá estar gravado em sua superfície.

O campo máximo de ajuste é de ± 15 pontos em HL. Desvios > acima disto já necessitam de manutenção ou troca da esfera.

> Pressione as teclas [^{*}] ou [^y] para aumentar ou diminuir o valor e pressione a tecla $[\leftarrow]$ para confirmar e retornar ao display principal.

6.12. Troca da bateria

> Observe a figura abaixo para a troca da bateria.

> Quando o símbolo da bateria [[] esvaziar [] deve-se efetuar a troca assim que possível.

> Sempre efetue a troca com o aparelho desligado.

> Instale as duas novas baterias (modelo AAA - 1,5V) seguindo as orientações gravadas no aparelho para positivo e negativo.

> Se o instrumento ficar 15 minutos sem as baterias os configurações ajustadas e as medições salvas na memória serão perdidas.

> Quando a carga da bateria estiver muito baixa, não possibilitando nem que o display se mantenha aceso, será mostrada uma mensagem [Battery Empty!] e o aparelho desligará automaticamente.

6.13. Desligamento automático

> O aparelho tem o desligamento automático após 5 minutos sem uso. O display vai piscar por 20 segundoss indicando que o aparelho está prestes a desligar. Se desejar que ele não deligue você tem esses 20 segundos para pressionar alguma tecla.

6.14. Conexão com computador via cabo USB

> O instrumento já é fornecido com o cabo para comunicação via USB, porém para completa conexão com o computador é necessário que seja adquirido o software (acessório opcional).

> O software possibilita análises estatísticas, gráficos, impressão, arquivo de medições.

7. Manutenção

7.1. Dispositivo de impacto

> Depois de usar o dispositivo de impacto por 1000-2000 vezes, utilize a escova de nylon (presente na maleta de acessórios) para limpar o tubo guia e o corpo de impacto do dispositivo. Para limpar o tubo guia, desparafuse o anel de apoio e tire o corpo de impacto, mova em espiral a escova de nylon sempre em direção anti-horária dentro do tubo guia. Quando a escova atingir o fundo, tire-a. Repita esta ação 5 vezes e recoloque o corpo de impacto e o anel de apoio.

> É expressamente proibido qualquer agente lubrificante para ser usado dentro do dispositivo de impacto.

7.2. Procedimentos padrões de manutenção

> Havendo desvios acima da tolerância do instrumento quando verificado fazendo a medição no bloco de teste Leeb HLD, pode-se efetuar a calibração eletrônica conforme seção 6.11.

> Depois de serem realizadas muitas medições com o instrumento (entre 3000~12000, dependendo da dureza do material medido) ocorrerá desgaste na esfera de teste e a mesma ficará com a parte inferior plana, acarretando em desvios na medição. Neste caso deve-se fazer a substituição da esfera, entrando em contato com nossa assistência técnica.

> Em caso de qualquer outra ocorrência, o durômetro deve ser devolvido a nossa empresa em período de garantia.

8. Transporte e armazenamento

> O produto deve ser armazenado em temperatura normal e longe de vibração, forte campo magnético, agente corrosivo, umidade, pó, entre outros. O produto deve ser mantido na embalagem original (maleta).

9. Partes fora da garantia

- 1. Corpo do instrumento (riscos, quebras, trincas)
- 2. Tampa da bateria (quebra)
- 3. Painel (danos nas teclas por força excessiva)
- 4. Corpo de impacto e esfera (desgaste)
- 5. Anel de apoio (desgaste)
- 6. Cabo USB (rompimento do fio)
- 7. Bateria