Manual de instruções | Durômetro Portátil Digital - 400.133 PLUS

Leia cuidadosamente as instruções antes de utilizar o equipamento.

DIGIMESS

Contato: sac@digimess.com.br

Este produto possuiu 1 ano de garantia contra defeitos de fabricação. Fabricado na China. Importado por Digimess Instrumentos de Precisão Ltda. CNPJ 05.396.034/0001-60

Índice

1.	Descrição geral	03
2.	Estrutura e princípios de teste	09
3.	Especificações	12
4.	Medição	13
5.	Lembretes especiais	16
6.	Procedimentos detalhados de medição	17
7.	Informação de falhas	35
8.	Manutenção	35
9.	Transporte e armazenagem	36
10.	Partes fora da garantia	36

1. Descrição geral

1.1. Características

- > Display LCD de matriz de pontos 128x64.
- > Exibição e operação do menu em inglês, com operação fácil e acessível.
- Com interface serial RS232, são utilizados modos múltiplos de comunicação para satisfazer às exigências de vários usuários.
- Equipado com 7 tipos de dispositivos de impacto (opcionais) com a vantagem de não serem recalibrados em caso de substituição, o sistema pode identificar automaticamente o tipo de dispositivo de impacto.
- Podem ser armazenados 48~350 grupos de dados (conforme determinação da média de 1~32 medições).
- Podem ser pré-ajustados o limite de dureza superior e inferior; quando o valor testado exceder os limites, o alarme automaticamente soará indicando as exigências das medições do grupo.
- > Iluminação extra do display para ser usada quando houver luz ambiente fraca.
- A tecla [HELP] pode ser pressionada para obter indicações operacionais em qualquer interface de exibição.
- > Com indicador de carga da bateria no display LCD, o operador pode observar a extensão de carga a qualquer momento.
- Acrescentado o material "aço fundido" para medição em HB (Brinell) diretamente sem conversão.
- Impressora matricial possibilita a impressão dos resultados dos testes e faz com que o laudo não apague com o passar do tempo, diferentemente da impressão térmica.
- > Bateria Ni-H recarregável e circuito de controle de carga.
- O software para PC (opcional) pode ser instalado de acordo com a necessidade do usuário.

1.2. Aplicação principal e faixa de medição

1.2.1. Aplicação principal

- > Testes em equipamentos montados e peças instaladas permanentemente.
- > Cavidade de matriz dos moldes.
- Peças pesadas.
- > Espaço estreito para teste onde é instalada a peça de trabalho.
- > Mancais e outras peças.
- > Casos que requerem resultados de prova com registro original normalizado.
- > Identificação rápida no recebimento do tipo de material adquirido.
- > Testes rápidos em posições diversas de medição em multipontos para peças robustas.

1.2.2. Capacidade do teste

Tabela 1

	Padrão	Dispositivo de impacto					
Material	de Dureza	D/DC	D+15	С	G	E	DL
	HRC	17,9~68,5	19,3~67,9	20,0~69,5	-	22,4~70,7	20,6~68,2
Aco carbono	HRB	56,9~99,6	-	-	47,7~99,9	-	37,0~99,9
aço temperado	HRA	59,1~85,8	-	-	-	61,7~88,0	-
e aço	HB	127~651	80~638	80~683	90~646	83~663	81~646
Tunaido	HV	83~976	80~937	80~996	-	84~1042	80~950
	HS	32,2~99,5	33,3~99,3	31,8~102,1	-	35,8~102,6	30,6~96,8
Aço	HRC	20,4~67,1	19,8~68,2	20,7~68,2	-	22,6~70,2	-
ferramenta	HV	80~898	80~935	100~941	-	82~1009	-
	HRB	46,5~101,7	-	-	-	-	-
Aço inoxidável	HB	85~665	-	-	-	-	-
	HV	85~802	-	-	-	-	-
Ferro fundido cinzento	HB	93~334	-	-	92~326	-	-
Ferro fundido nodular	НВ	131~381	-	-	127~364	-	-
Ligas	HB	19~164	-	23~210	32~168	-	-
alumínio	HRB	23,8~84,6	-	22,7~85,0	23,8~85,5	-	-
Latão (ligas	HB	40~173	-	-	-	-	-
cobre-zinco)	HRB	13,5~95,3	-	-	-	-	-
Bronze (ligas cobre-alumínio cobre-latão)	HB	60~290	-	-	-	-	-
Cobre	HB	45~315	-	-	-	-	-

Tabela 2

No.	Material	HLD	Resistência σb (MPa)
1	Aço moderado	350~522	374~780
2	Aço carbono	500~710	737~1670
3	Aço Cr (cromo)	500~730	707~1829
4	Aço V-Cr (cromo-vanadium)	500~750	704~1980
5	Aço Ni-Cr (cromo-níquel)	500~750	763~2007
6	Aço Mo-Cr (cromo-molibdênio)	500~738	721~1875
7	Aço Mo-Ni-Cr (cromo-níquel-molibdênio)	540~750	844~1933
8	Aço Si-Mn-Cr (cromo-manganês-silício)	500~750	755~1993
9	Aço temperado	630~800	1180~2652
10	Aço inoxidável	500~710	703~1676

1.3. Configuração

1.3.1. Configuração padrão

Unidade principal	01
Unidade de impacto tipo D	01
Anel de apoio pequeno	01
Escova	01
Bloco padrão de dureza	01
Carregador	01
Papel de impressão	01 - integrado na impressora

1.3.1. Configuração opcional

Outros dispositivos de impacto e anéis de apoio não convencionais. Verificar tabela 3 e tabela 4. Opcional: Cabo e software de visualização dos dados.

Tabela 3A

Tipo de unidades de impacto	DC (D) / DL	D+15	С	G	E
Energia de impacto	11mJ	11mJ	2,7mJ	90mJ	11mJ
Massa do corpo de impacto	5.5/7.2g	7.8g	3.0g	20.0g	5.5g
Dureza da ponta de impacto	1600HV	1600HV	1600HV	1600HV	5000HV
Diâmetro da ponta de impacto	3mm	3mm	3mm	5mm	3mm
Material da ponta de impacto	Carboneto Tungstênio	Carboneto Tungstênio	Carboneto Tungstênio	Carboneto Tungstênio	Diamante sintético
Diâmetro da unidade de impacto	20mm	20mm	20mm	30mm	20mm
Comprimento da unidade de impacto	86(147)/175mm	162mm	141mm	254mm	155mm
Massa da unidade de impacto	50g	80g	75g	250g	80g
Dureza máxima da amostra	940HV	940HV	1000HV	650HV	1200HV
Rugosidade média da superfície da amostra (Ra)	1.6 µm	1.6 µm	0.4 μm	6.3 µm	1.6 µm
Peso mínimo da amostra:					
- Medido diretamente	>5kg	>5kg	>1.5kg	>15kg	>5kg
- Com necessidade de suporte	2~5kg	2~5kg	0.5~1.5kg	5~15kg	2~5kg
- Com necessidade de acoplamento	0.05~2kg	0.05~2kg	0.02~0.5kg	0.5~5kg	0.05~2kg
Espessura mínima do modelo	5mm	5mm	1mm	10mm	5mm
Espessura de camada mínima para superfície endurecida	≥0.8mm	≥0.8mm	≥0.2mm	≥1.2mm	≥0.8mm

Tipo d de i	e unidades impacto	DC (D) / DL	D+15	С	G	E
Dureza	Diâmetro	0,54mm	0,54mm	0,38mm	1,03mm	0,54mm
300HV	Profundidade	24µm	24µm	12µm	53µm	24µm
Dureza	Diâmetro	0,54mm	0,54mm	0,32mm	0,90mm	0,54mm
600HV	Profundidade	17 µm	17 µm	8 µm	41 µm	17 µm
Dureza 800HV	Diâmetro	0,35mm	0,35mm	0,35mm	-	0,35mm
	Profundidade	10 µm	10 µm	7 µm	-	10 µm
Tipo disponível de unidade de impacto		D: Teste geral DC: Teste em orifício ou cavidade cilíndrica DL: Teste de sulco estreito ou de buraco	D + 15: Teste de sulco ou superfície com reentrância	C: Teste de partes pequenas, leve, finas e superfície de camada endurecida	G: Teste de alumínio com superfície rugosa, pesada, grossa e grande	E: Teste de material de dureza super alta

Tabela 4 - Apoios especiais

No.	Código	Tipo	Desenho	Observações
1	400.130-16	Z10-15		Para superfície externa cilíndrica R10~R15
2	400.130-17	Z14.5-30		Para superfície externa cilíndrica R14,5~R30
3	400.130-18	Z25-50		Para superfície externa cilíndrica R25~R50
4	400.130-13	HZ11-13		Para superfície interna cilíndrica R11~R13
5	400.130-14	HZ12.5-17		Para superfície interna cilíndrica R12,5~R17
6	400.130-15	HZ16.5-30		Para superfície interna cilíndrica R16,5~R30
7	400.130-19	K10-15		Para superfície externa esférica SR10~SR15
8	400.130-20	K14.5-30		Para superfície externa esférica SR14,5~SR30
9	400.130-21	HK11-13		Para superfície interna esférica SR11~SR13
10	400.130-22	HK12.5-17		Para superfície interna esférica SR12,5~SR17
11	400.130-23	HK16.5-30		Para superfície interna esférica SR16,5~SR30
12	400.130-24	UN		Para superfície externa cilíndrica, raio ajustável R10∼∞

1.4. Condições de funcionamento

- > Temperatura ambiente para funcionamento: 0°C ~ 40°C;
- > Umidade relativa para funcionamento: \leq 90%;
- > No ambiente ao redor não deverá ter vibração, campo magnético forte e poeira corrosiva.

2. Estrutura e princípios de teste

2.1. Estrutura

- 1. Entrada do carregador de bateria
- 2. Entrada do cabo de saída de dados
- 3. Entrada do plug do dispositivo de impacto
- 4. Impressora e compartimento do papel
- 5. Display LCD
- 6. Teclado
- 7. Dispositivo de impacto
- 8. Chave liga/desliga da impressora

- 9. Botão de disparo
- 10. Gatilho
- 11. Tubo guia
- 12. Bobina
- 13. Cabo de conexão
- 14. Corpo de impacto
- 15. Anel de apoio

2.1.3. Nomes das partes da unidade de impacto tipo D

2.1.4. Unidades / dispositivos de impacto opcionais

Tipo D:	Dispositivo de impacto padrão
Tipo DC:	Dispositivo para locais com altura reduzida (furos ou interior de peças)
Tipo DL:	Dispositivo para canais com largura muito reduzida
Тіро С	Dispositivo para menores espessuras, menor massa ou camadas
Tipo D+15:	Dispositivo para canais curtos ou ressaltos
Тіро Е:	Dispositivo para materiais de dureza muito elevada
Tipo G:	Dispositivo para peças muito robustas, fundidos, rugosidade mais alta

2.2. Princípios de teste

Durante um teste de dureza, um corpo de impacto, equipado com uma ponta esférica de carboneto de tungstênio, impacta sob certa força teste contra a superfície de teste, na qual repercutirá. A velocidade de impacto e repercussão são medidas, de certo modo sem contato, no momento preciso em que a ponta está localizada a 1mm da superfície de ensaio. Ela é realizada pelo imã permanente embutido no corpo de impacto, o qual durante o teste passa através de uma bobina. Durante o movimento de avançar e repercutir, pequenas cargas elétricas são induzidas, sendo proporcionais as velocidades. Os valores da medição derivados das velocidades de impacto e repercussão são processados nos valores de dureza pelo equipamento:

HL = 1000 x Vb/Va

Sendo:

- HL valor de dureza Leeb
- Vb Velocidade de repercussão do corpo de impacto
- Va Velocidade de impacto do corpo de impacto.

3. Especificações

> Exatidão e repetitividade do valor indicado:

Tabela 5

No.	Dispositivo de impacto	Valor de dureza do padrão de dureza Leeb	Erro do valor mostrado	Repetitividade do valor mostrado
1	D	760 ± 30 HLD 530 ± 40HLD	± 6HLD ± 10HLD	6HLD 10HLD
2	DC	760 ± 30HLDC 530 ± 40HLDC	± 6HLDC ± 10HLDC	6 HLD 10HLD
3	DL	878 ± 30 HLDL 736 ± 40 HLDL	± 12HLDL	12HLDL
4	D + 15	766 ± 30 HLD +15 544 ± 40 HLD +15	± 12HLD + 15	12 HLD + 15
5	G	590 ± 40 HLG 500 ± 40 HLG	± 12 HLG	12 HLG
6	E	725 ± HLE 508 ± HLE	±12HLE	12 HLE
7	С	822 ± HLC 590± 40 HLC	± 12 HLC	12 HLC

- > Faixa de medição: HLD (170 \sim 960) HLD
- > Direção de medição: 360°
- > Escala de dureza: HL, HB, HRB, HRC, HRA, HV, HS
- > Display: LCD, matriz LCD 128x64
- > Capacidade da memória: de 48~350 grupos
- (conforme determinação da média de 1~32 medições).
- > Faixa do limite superior e inferior: o mesmo da faixa de medição
- > Largura do papel da impressora: 44,5 ± 0,5mm
- > Diâmetro do rolo do papel da impressora: 40mm
- > Tensão de funcionamento: 6V
- > Tempo de carga: $2 \sim 3,5$ h
- > Fornecimento de energia por carga : 12V / 600mA
- > Período contínuo de funcionamento: ±50 h (sem uso da impressora e iluminação)
- > Interface de comunicação padrão: RS232

3.2. Dimensões e peso

- > Dimensões: 234x88x46mm
- > Peso: ±0,6kg

4. Medição

4.1. Preparação e inspeção antes da medição

4.1.1. Preparação da superfície da peça a ser medida

A preparação para a superfície da peça de trabalho deve obedecer a algumas exigências importantes especificadas na Tabela 3.

> Durante a preparação da amostra, deve ser evitado o máximo possível seu super aquecimento ou resfriamento evitando alteração em sua dureza original.

> Se a superfície a ser testada estiver muito rugosa, poderá acarretar em um valor irreal. Sendo assim, a superfície da amostra deve ser plana, lisa e não estar oleosa.

> Superfície curva: é melhor que a superfície para medição da peça de trabalho seja o mais plana possível. Quando o raio de curvatura (R) da superfície curva a ser testada é menor que 30mm (para os dispositivos de impacto tipo D, DC, D+15, C, E e DL) e menor que 50mm (para ispositivo de impacto tipo G), deve ser usado o anel de apoio pequeno (fornecido junto ao instrumento) ou um anel de especial (conforme tabela 4).

> Sustentação da peça a ser medida: a sustentação não é necessária para a amostra que possuir espessura e massa considerável. A amostra com peso médio deve ser colocada sobre uma superfície plana e firme, e também deve estar estável e sem qualquer balanço.

> É necessário que a amostra tenha espessura suficiente, e a espessura mínima deve estar de acordo com as especificações da Tabela 3.

> Quanto a peça a ser medida possuir camada de superfície temperada, a profundidade da camada temperada deve obedecer às especificações da Tabela 3.

> Acoplamento:

A amostra com peso leve deve estar firmemente acoplada ao suporte; as superfícies acopladas devem ser planas, lisas e o agente de acoplamento pode ser graxa ou vaselina. A direção de medição deve sempre estar na vertical quando se trabalhar com superfície acoplada.

Quando a peça testada for muito longa e flexível (uma chapa por exemplo), é possível que ocorra deformação e instabilidade independente da quantidade suficiente de massa e espessura, resultando em imprecisão, portanto a parte detrás do ponto de medição deve ser reforçado e suportado.

> Não usar suportes magnéticos.

4.1.2. Ajuste do sistema do durômetro

Procedimentos específicos para ajuste, consultar item 6.5.

4.1.3. Ajuste das condições de medição do durômetro

Procedimentos específicos para ajuste, consultar item 6.5.

4.2. Prova

> Deve ser usado o bloco de dureza HLD (fornecido com o instrumento) para verificar o durômetro antes da medição, e o erro do valor da leitura e repetitividade não devem ser maiores que o especificado na Tabela 5.

> Caso o desvio seja maior que a tolerância do instrumento, deve ser realizada a calibração eletrônica, conforme mostrado no item 6.11.

4.2.1. Impressora e papel da impressora

> Empurre e remova a tampa do papel da impressora para frente e para baixo. Insira a ponta do papel na entrada do alimentador; pressione a tecla [FEED] e aperte até que o final do papel passe pela impressora e saia da estrutura, recoloque então a tampa do papel.

> Substituir a fita de tinta: remova a impressora e desparafuse os parafusos para abrir a tampa superior da mesma; efetue a troca da fita e depois gire o botão na direção da seta da fita para esticá-la depois da substituição.

4.2.2. Início

> Insira o plugue do dispositivo de impacto no soquete correspondente localizado à direita do aparelho.

> Pressione a tecla [POWER] para ligar o aparelho e então entrar no estado de medição.

4.2.3. Carregando (gatilho)

> Para carregar o corpo de impacto na posição para disparo, pressione o corpo plástico preto do dispositivo de impacto para baixo. Após você sentir o encaixe poderá retornar para a posição inicial.

> Pressione firmemente o anel de apoio do dispositivo de impacto na superfície da amostra a ser medida.

4.2.4. Prova

> Pressione o botão no alto do dispositivo de impacto para fazer o disparo. Neste momento, a amostra a ser medida, o dispositivo de impacto e a mão do operador devem estar numa posição estável, e a direção da medição ajustada de acordo com o eixo do dispositivo de impacto.

> A distância entre duas marcações, ou a distância entre o centro de uma marcação e a lateral da amostra devem estar de acordo com as especificações da Tabela 6.

Tipo de dispositivo de impacto	Distância do centro de duas marcações	Distância entre o centro de uma marcação e a lateral da peça de prova
D, DC	≥ 3	≥ 5
DL	≥ 3	≥ 5
D + 15	≥ 3	≥ 5
G	≥ 4	≥ 8
E	≥ 3	≥ 5
С	≥ 2	≥ 4

Tabela 6 - Unidades em milímetros

4.2.5. Leitura do valor medido

> Depois de realizado o disparo e feita a medição no rebote, o valor aparecerá imediatamente no display.

4.2.6. Imprimindo o resultado

Ver itens 6.3.3 e 6.6

4.2.7. Desligando o aparelho

Pressione a tecla [POWER] para desligar.

4.2.8. Nomenclatura dos resultados de prova

> O valor de dureza será exibido na frente das letras HL (Leeb Hardness - Dureza Leeb), e o tipo de dispositivo de impacto será exibido após as letras HL. Por exemplo, 700 HLD mostra que a dureza L é 700 mediante a medição feita pelo dispositivo de impacto tipo D.

Para outros tipos de dureza que foram convertidos do valor de dureza L, o símbolo de dureza correspondente deveria ser adicionado à frente do símbolo de dureza L. Por exemplo, 400 HV HLD mostra que o valor de dureza Vickers é 400, que foi convertido do valor de dureza L medido pelo dispositivo de impacto tipo D. De costume não se usa esta nomenclatura, se tratando apenas por 400 HV neste caso.

Nota: Os valores HL que foram medidos usando outros dispositivos de impacto são nomeados diferentemente. Por exemplo: 700 HLD \neq 700 HLC.

5. Lembretes especiais

A substituição do dispositivo de impacto deve ser realizada com o instrumento desligado, caso contrário o tipo de dispositivo de impacto pode não ser identificado automaticamente, e também poderá causar danos ao circuito do aparelho.

> O valor atual medido pode ser impresso ou armazenado antes de ser finalizada a quantidade de medições para média [impact times]. Se for preciso a impressão ou armazenamento pode-se pressionar a tecla [Average] para finalizar a medição, desse modo a impressão pode ser realizada.

> As funções das teclas [Auto Save], [Auto Print] e [Auto Trans] estarão inativas se for pressionada a tecla [Average] para finalizar a medição previamente.

Somente os dispositivos de impacto tipo D e DC têm a possibilidade de medição da resistência [Hard/ob] para que o ajuste não possa ser alterado se forem usados outros tipos de dispositivos de impacto. Se o ajuste foi alterado em [ob] via dispositivo de impacto tipo D/DC, o ajuste [Hard/ob] será alterado para [Hard] quando forem instalados outros dispositivos de impacto ao invés do dispositivo de impacto tipo D/DC.

> Quando [ob] foi ajustado, a escala de dureza não será ajustada (no cursor aparecerá imediatamente [Hardness Scale]).

> Nem todos os materiais podem ser medidos em todas as escalas de dureza, e a mesma retornará à dureza L (HL) automaticamente depois que um material não correspondente a uma determinada escala for escolhido. Assim, [Material] deverá ser ajustado sempre primeiramente nos parâmetros de medição e [Hardness Scale] deverá ser ajustada posteriormente.

6. Procedimentos detalhados de medição

6.1. Início

> Pressione a tecla [Power] para ligar o instrumento, a seguinte interface será exibida:

TH120 Hardness Tester TIME Group Inc. Probe Type: D

> Sempre conecte o dispositivo de impacto antes de ligar o aparelho.

> O aparelho verificará e exibirá o tipo de dispositivo de impacto automaticamente e então entrará na interface principal do display de medição. Observe cuidadosamente se o tipo de dispositivo está correto ou não.

6.2. Desligando

> O aparelho pode ser desligado pressionando a tecla [Power] em qualquer estado do display.

Nota: Quando estiver carregando o aparelho permanecerá ligado para que a carga possa ser monitorada.

6.3. Teste

> O aparelho entrará na interface do display principal depois que ligar, conforme figura abaixo:

> Os valores medidos são exibidos com fontes grandes nesta interface, e as teclas de atalho estarão ativas.

6.3.1. Detalhes da interface do display principal

Informação da bateria: exibição da carga de bateria restante, e exibição do grau de carregamento quando no estado de recarga.

Direção do impacto: direção ajustada a qual será usado o dispositivo de impacto.

Indicador da média das medições: a média das medições será exibida quando for concluída a quantidade ajustada de testes.

Escala de dureza: escala de dureza ajustada para medição.

Valor medido: medição atual realizada (sem o indicador da média da medição) ou média do valor atual (com o indicador da média da medição). Mostrará que o valor é superior à faixa de dureza de determinada quando é exibido 1 e mostrará que o valor é inferior à faixa de dureza de determinada quando é exibido 1.

Material: o tipo de material que foi ajustado.

Quantidade de medições para média: será exibida a quantidade de medições finalizadas até atingir o valor determinado para o cálculo da média.

6.3.2. Procedimentos de teste

A medição deve ser realizada nesse estado da interface (conforme 6.3) e o valor atual testado será exibido logo que uma medição for finalizada. A contagem da quantidade de medições para média adicionará 1 por teste realizado. A campainha emitirá um som contínuo sempre que o valor exceder o limite de tolerância. A campainha emitirá dois sons curtos quando o número de medições para a média ajustado estiver realizado. Após 2 segundos de espera, a média do valor será exibida com um som curto emitido pela campainha.

6.3.1. Detalhes da interface do display principal

> Pressione a tecla [SAVE] para salvar os dados da medição atual do grupo. A tecla só pode estar ativa depois que a média for exibida. Pode-se salvar apenas uma única vez.

> Pressione a tecla [DELETE] para o último valor simples medido ser apagado. Esta operação deve ser confirmada na interface a seguir:

 > Use [◀] e [▶] para mover o cursor para [YES] e pressione a tecla [ENTER] para confirmar o cancelamento do último valor simples medido.

> Use [◀] e [▶] para mover o cursor para [NO] e pressione a tecla [ENTER] para cancelar a remoção. Esta operação pode ser cancelada pressionando a tecla [MENU ESC]. > A alimentação do papel da impressora pode ser realizada pressionando a tecla [FEED] (a chave liga/desliga da impressora deve estar na posição "ON").

> Os dados podem ser impressos pressionando a tecla [PRINT] (a chave da impressora deve estar na posição "ON"). A tecla funcionará somente depois que a sequência de medições simples forem concluídas e a média for exibida.

> O valor simples medido pode ser visualizado pressionando-se a tecla [▲] ou [▼] e a média ou o último valor medido pode ser exibido novamente pressionando-se a tecla [MENU ESC]. A sequência visualizada será diferente pressionando a tecla [▲] ou [▼].

> A média da medição pode ser concluída pressionando-se a tecla [AVERAGE], caso o ajuste da quantidade de medições para a média não tiver sido completada.

> A iluminação do display LCD pode ser ligada ou desligada pressionando-se a tecla [\$].

> Informações de ajuda ao usuário podem ser exibidas pressionando-se a tecla [HELP], e depois [MENU ESC] ou [ENTER] para retornar à interface principal.

> Pressione a tecla [MENU IN] para entrar na interface do menu principal.

Ajuste da tecla de atalho:

> O ajuste da direção de medição pode ser alterado pressionando-se a tecla [DIREC.].

> O ajuste quantidade de medições para obtenção da média pode ser alterado pressionando-se a tecla [TIMES]. A contagem adicionará 1 quando for pressionada a tecla [TIMES], e retornará a 1 quando o valor ultrapassar 32.

> A escala de dureza pode ser alterada pressionando-se a tecla [HARD.]. Sempre que pressionar a tecla uma vez, será realizada a passagem de forma circular entre todas as escalas de dureza que estão disponíveis para o material escolhido e dispositivo de impacto usado. A escala de dureza será alterada para dureza L se o ajuste atual for para medição de resistência.

> O ajuste do tipo de material pode ser alterado pressionando a tecla [MAT'L]. Sempre que pressionar a tecla uma vez, será realizada a passagem de forma circular entre todos os materiais e a escala de dureza será alterada para dureza L. O material deve ser ajustado primeiramente e depois deve ser ajustada a escala de dureza.

Nota: a conversão da escala de dureza L para outras escalas se dá automaticamente por meio de cálculos feitos e processados pelo instrumento, dependendo do tipo de material inclusive, porém a medição não é feita diretamente nestas outras escalas.

6.4. Fluxograma do menu

> O ajuste de parâmetros e as funções adicionais do instrumento podem ser realizados pelas operações do menu. Na interface do display principal, pressione a tecla [MENU IN] para entrar no menu principal.

20

6.5. Ajuste das condições de medição

> Quando estiver na interface do display principal, pressione a tecla [MENU IN] para entrar no menu principal.

Test Set

Print Function Memory Manager System Set About Software

Impact Direc. Average Material Hardness Scale Tolerance Limit Hard/ob: Hard > Pressione a tecla [ENTER] para entrar no menu [TEST SET].

Pressione as teclas [▲] ou [▼] para mover o cursor ao item que será ajustado, e então pressione a tecla [ENTER].

Notas:

1. Se [Hard/ob] estiver ajustada para [ob], a escala de medição não pode ser selecionada, então, o cursor passará direto por [Hardness] enquanto estiver se movendo.

2. Somente o dispositivo de impacto tipo D/DC é fornecido com a função de medição de resistência, então o cursor não pode ser movido ao item [Hard/ob] quando outro tipo de dispositivo for usado.

3. O símbolo ↓ na base esquerda do menu mostra que o mesmo não chegou ao fim e que pode ir mais para baixo pressionando-se a tecla [▼]; O símbolo ↑ no topo do menu mostra que o mesmo está no fim e que pode ir mais para cima pressionando-se a tecla [▲].

6.5.1. Ajuste da direção de impacto

 > Use [◀] e [▶] para mover o cursor na direção que será usado o dispositivo de impacto.

> > Pressione [ENTER] para finalizar a alteração. Pressione [MENU ESC] para cancelar a alteração.

6.5.2. Ajuste da quantidade de medições para média (average)

> A quantidade de medições para cálculo da média pode ser ajustade de 1~32 vezes.

 Pressione as teclas numéricas para adotar um valor. O cursor se moverá automaticamente entre os dígitos depois da definição de cada um.

- Pressione [ENTER] para finalizar a alteração.
- > Pressione [MENU ESC] para cancelar a alteração.

6.5.3. Ajuste do tipo de material

Materiais disponíveis no caso de [Hard/ σ b] for ajustado para [Hard]:

>

Last Stee	Cast Stee	1
-----------	-----------	---

CWT. Steel

STAIN. Steel

GC. Iron

NC. Iron

Cast Alumin

Copper-Zinc

Copper-Alumin

Wrought Copper

Pressione [▲] ou [▼] para mover o cursor para o material a ser ajustado.

Pressione [ENTER] para finalizar a alteração.

Pressione [MENU ESC] para cancelar a alteração.

Notas:

>

>

1. Após a alteração do tipo de material, o ajuste da escala de dureza retornará a HL.

2. O tipo de material deve ser escolhido antes da escala de dureza.

3. O símbolo \downarrow na base esquerda do menu mostra que o mesmo não chegou ao fim e que pode ir mais para baixo pressionando-se a tecla [$\mathbf{\nabla}$]; O símbolo \uparrow no topo do menu mostra que o mesmo está no fim e que pode ir mais para cima pressionando-se a tecla [$\mathbf{\Delta}$].

Materiais disponíveis no caso de [Hard/σb] for ajustado para [σb]:

Mild Steel

- High-C Steel
- Cr Steel
- Cr-V Steel
- Cr-Ni Steel
- Cr-Mo Steel
- Cr-Ni-Mo Steel
- Cr-Mn-Si Steel
- Super ST. Steel
- STAIN. Steel

6.5.4. Ajuste da escala de dureza

Pressione [▲] ou [▼] para mover o cursor para o material a ser ajustado.

- Pressione [ENTER] para finalizar a alteração.
- Pressione [MENU ESC] para cancelar a alteração.

Notas:

>

>

>

>

>

>

1. O símbolo \downarrow na base esquerda do menu mostra que o mesmo não chegou ao fim e que pode ir mais para baixo pressionando-se a tecla [\checkmark]; O símbolo \uparrow no topo do menu mostra que o mesmo está no fim e que pode ir mais para cima pressionando-se a tecla [\blacktriangle].

- > Use [◀] e [▶] para mover o cursor na direção que será usado o dispositivo de impacto.
 - Pressione [ENTER] para finalizar a alteração.
 - Pressione [MENU ESC] para cancelar a alteração.

> Use [◄] ou [▶] e [▲] ou [♥] para mover o cursor
 à escala de dureza a ser usada.

- Pressione [ENTER] para finalizar a alteração.
- Pressione [MENU ESC] para cancelar a alteração.

Notas:

1. Somente serão exibidas as escalas de dureza compatíveis com o material que foi selecionado e com o dispositivo de impacto que está sendo usado.

2. O material deve ser escolhido antes da escala de dureza.

3. Depois que o ajuste do material foi alterado, o ajuste da escala de dureza retornará automaticamente à HL.

6.5.5. Ajuste do limite de tolerância

> Pressione as teclas numéricas para determinar o valor para cada tolerância (mínima e máxima) e o cursor passará automaticamente entre os 2 campos.

- Pressione [ENTER] para finalizar a alteração.
- > Pressione [MENU ESC] para cancelar a alteração.

Notas:

1. Se o ajuste exceder a faixa de medição, o aparelho solicitará ao operador para reajustar.

2. A troca será feita automaticamente se o limite Min. de tolerância for maior que o limite Max. de tolerância.

6.5.6. Ajuste de dureza/σb

 Pressione a tecla [ENTER] para realizar a seleção entre [Hard/σb] e o cursor mudará entre dureza e resistência.

Nota:

1. Somente o dispositivo de impacto tipo D/DC será fornecido com a função de medição de resistência. O item sempre estará ajustado para [Hard] se o dispositivo de impacto não for do tipo D ou DC.

6.6. Função de impressão

Test Set

Print Function

Memory Manager

System Set About Software

Pressione [▲] ou [▼] para mover o cursor para [Print Function].

Pressione [ENTER] para entrar no menu [Print > Function].

Pressione [▲] ou [▼] para mover o cursor para > [Print Current].

Pressione [ENTER] para entrar no menu [Print > Function].

Notas:

>

1. Mantendo pressionada a tecla [MENU ESC] a impressão pode ser finalizada durante o processo.

6.6.1. Impressão da medição atual

TH120 Hardness Tester TIME Group Inc. No.: Operator:	
Time: 13:40:46 Date: 12/03/2007 Probe Type: D Impact direc.: ↓ Average: 05 Material: (Cast) Steel 514 509 515 516 515 Average= 514 HL	

> Pressionando [Print Current], serão impressas informações como nome do equipamento, número de série, operador, hora, data, tipo de dispositivo de impacto, quantidade para média, material, valor simples medido e valor médio, todos referentes a última medição realizada e finalizada.

Notas:

As informações dos campos número de série e 1. operador são para preenchimento manual.

TH120)	
Hardness 7	Tester	
TIME Grou	ıp Inc.	
Date: 12/03/2	2007	
Probe Type: D)	
Impact direc.:	\downarrow	
Average: 05		
Material: (Cast	Material: (Cast) Steel	
No. 001		
514	509	
515	516	
515		
Average= 514	HL	
No. 002		
785	785	
782	783	
786	,00	
Average= 784 HL		
0		

 Pressionando [Print Memory], será necessário primeiramente selecionar uma faixa de grupo de memória para impressão, e esta faixa que foi salva na memória será exibida juntamente.

 Pressione as teclas numéricas para determinar um valor, e o cursor alternará automaticamente para ambos os campos.

- > Pressione [ENTER] para confirmar a impressão.
- > Pressione [MENU ESC] para cancelar a operação.

A informação impressa incluirá: nome do equipamento, data, tipo de dispositivo de impacto, direção do impacto, quantidade para média, material, nº dos grupos, valor simples medido e média do valor.

> Se a informação no grupo for a mesma que no grupo anterior para campos como data, tipo de dispositivo de impacto, direção do impacto, quantidade para média, material e escala de dureza, somente o nº de grupos, valor simples medido e média do valor serão impressos, não repetindo informações. Caso contrário a data e condições de medição serão impressos novamente.

Notas

1. O número existente dos grupos será impresso no caso do número que foi ajustado exceder a faixa existente.

2. Não há diferença na sequência para imprimir o grupo inicial e final, ou seja, se os grupos 1~5 forem impressos, a sequência pode ser ajustada a partir de 1 a 5 ou a partir de 5 a 1.

6.6.3. Impressão de toda a memória

6.7. Controle de memória

> Quando estiver na interface do display principal, pressione [MENU IN] para entrar no menu principal.

6.7.1. Visualizar desde posição No. 1 / Visualizar desde posição final

> Pressione a tecla [ENTER] em [View from No.1] para exibir os dados na memória a partir do grupo No. 1.

> Pressione a tecla [ENTER] em [View from End] para exibir os dados na memória a partir do último grupo memorizado.

6.7.2. Visualizar grupo selecionado No.X

> Pressione [View from No.] para entrar na interface de escolha.

> Pressione as teclas numéricas para determinar um grupo de memória.

> Pressione [ENTER] para exibir os dados do grupo selecionado.

> Pressione [MENU ESC] para cancelar.

6.7.3. Transferência de dados

> Pressione a tecla [ENTER] em [Transfer] para transferir os dados da memória para computador via interface serial RS232 em formato de texto.

6.7.4. Deletando um grupo selecionado na memória

> Pressione [Delete by No.] e será exibida uma interface para se determinar a faixa de grupos a serem deletados.

> Pressione as teclas numéricas para determinar os valores.

> Pressione [ENTER] para deletar a faixa de grupo selecionada.

> Pressione [MENU ESC] para cancelar a operação.

Notas:

1. Se a escolha da faixa de grupos exceder a faixa real existente, então serão deletados os grupos existentes encontrados nesta faixa.

2. Não há diferença na sequência para o grupo inicial e final, ou seja, se os grupos 1~5 forem deletados, a sequência pode ser ajustada de 1 a 5 ou de 5 a 1.

3. Os dados de numeração de grupos salvos na memória serão reorganizados após o cancelamento.

4. Ao deletar dados pode ser solicitado um tempo para reorganização dos dados que ficaram. Nunca desligue o instrumento nessa hora, pois pode ocasionar conflito.

6.7.5. Deletando tudo

> Pressione [Delete All] para deletar todos os dados da memória.

> Esta interface de confirmação será exibida quando deletar os dados na memória.

> Use [◀] e [▶] para mover o cursor para [YES], e pressione [ENTER] para deletar os dados.

 > Use [◀] e [▶] para mover o cursor para [NO], e pressione [ENTER] para cancelar a operação.

> Pressionando [MENU ESC], a operação de deletar a memória será cancelada.

6.8. Visualização da interface

No. 001	12/03	514HL
No. 002	12/03	785HL
No. 003	12/03	516HL
No. 004	12/03	789HL
No. 005	12/03	570HL
No. 006	12/03	852HL
No. 007	12/03	523HL
No. 008	12/03	796HL

>

>

1

 Os números, datas e médias de valores de no máximo 8 grupos podem ser exibidos na mesma interface.

Pressione [▲] ou [▼] para trocar as páginas.

Pressione [MENU ESC] para sair desse menu.

> Pressionando [ENTER], o cursor será exibido e outros detalhes podem ser visualizados.

No. 001	12/03	514HL
No. 002	12/03	785HL
No. 003	12/03	516HL
No. 004	12/03	789HL
No. 005	12/03	570HL
No. 006	12/03	852HL
No. 007	12/03	523HL
No. 008	12/03	796HL

Pressione [▲] ou [▼] para selecionar o grupo na interface.

> Pressione [MENU ESC] para retornar à interface anterior.

> Pressione [ENTER] para visualizar as informações detalhadas no grupo selecionado.

No. 001 12/03/0	2
Average = 514 HL	
$D \downarrow 05$ Time	S
(Cast) Steel	I

Pressione [▲] ou [▼] para alternar as páginas e visualizar a média do valor, as condições de medição ou o valor simples medido.

> Pressione [MENU ESC] para retornar à interface visualizada anteriormente.

511 514	513 515	516

6.9. Ajuste do sistema

Quando estiver na interface do display principal, pressione [MENU IN] para entrar no menu principal.

Test Set Print Function Memory Manager System Set About Software ↓ [ENTER]

Auto Save: Off Auto Print: Off Auto Delete: Off Auto Trans.: Off Key Sound: On Warn. Sound: On LCD Brightness Time Date Set

Ţ

Pressione [▲] ou [▼] e mova o cursor para [System Set].

Pressione [ENTER] para entrar no menu [System Set].

> Pressione $[\blacktriangle]$ ou $[\blacktriangledown]$ e mova o cursor ao item a ser ajustado.

> Pressione [ENTER] e altere diretamente ou entre na interface correspondente de alteração.

Pressione [MENU ESC] para retornar.

Nos itens [Auto Save], [Auto Print], [Auto Delete],
 [Auto Trans.], [Key Sound] e [Warn. Sound], a tecla
 [ENTER] pode ser selecionada entre [On] ou [Off].

> Se [Auto Save] estiver ajustado para [On], os dados atuais do grupo serão salvos automaticamente após o término da medição e a exibição da média do valor.

> Se [Auto Print] estiver ajustado para [On], os dados atuais serão impressos após o término da medição e a exibição da média do valor.

> Se [Auto Delete] estiver ajustado para [On], erros serão cancelado automaticamente quando a média for completada ou a medição terminada previamente pressionando [AVE.]. Se estes dados forem cancelados, devem ser realizadas novas medições adicionais para cumprir a quantidade para média.

> Se [Auto Trans.] estiver ajustado para [On], os dados atuais do grupo serão transferidos em formato texto via RS232 após o término da medição e a exibição da média do valor.

> Se [Key Sound] estiver ajustado para [On], a campainha emitirá um som curto cada vez que pressionar alguma tecla.

> Se [Warn. Sound] estiver ajustada para [On], a campainha enviará um longo som no caso do valor medido exceder o limite de tolerância, cancelamento dos dados ou outros motivos.

6.9.1. Ajuste do Brilho da tela LCD

6.9.2. Ajuste da hora e data

Test Set

Print Function

System Set

Memory Manager

About Software

[ENTER]

Ţ

Pressione [▲] para aumentar o brilho do LCD. Pressione [▼] para reduzir o brilho do LCD.

Pressione [ENTER] para finalizar a alteração. Pressione [MENU ESC] para cancelar a alteração.

Quanto mais luminoso o brilho, mais forte a cor; Quanto mais opaco o brilho, mais suave a cor;

6.10. Informações sobre o software interno

>

> Quando estiver nesta interface, a hora e a data serão exibidas na tela no formato "mês/dia/ano".

> Pressione as teclas numéricas para selecionar novos valores e o cursor alternará automaticamente entre os campos.

Pressione [ENTER] para finalizar a alteração.

Pressione [MENU ESC] para cancelar a alteração.

> Quando estiver na interface do display principal, pressione [MENU IN] e entre no menu principal. > Pressione [▲] ou [▼] para mover o cursor para [About Software].

Pressione [ENTER] para entrar [About Software].

> As informações sobre o durômetro e o software embutido serão exibidas nesta interface.

 A versão do software e a identificação do software embutido estão sujeitas às alterações devido à atualização do software sem prévia notificação.

TIME TH120 Version: 1.0A Code: A0920110A SN: A09202010001

6.11. Calibração eletrônica

> O durômetro e o dispositivo de impacto devem ser calibrados com o bloco de teste padrão de dureza L antes do primeiro uso, ou após um longo período inoperante.

> Uma calibração é suficiente para cada tipo de dispositivo de impacto que foram equipados com uma unidade principal. A recalibração não é necessária depois da substituição do dispositivo de impacto posterior..

> Com o equipamento desligado, pressione [ENTER] e [Power] ao mesmo tempo para entrar na interface do software de calibração.

A medição deve ser sempre na direção↓

> Devem ser medidos verticalmente 5 pontos no bloco padrão de teste de dureza L.

A média das 5 medidas será exibida em "average".
 Ex.: 795 HLD.

Pressione [▲] ou [▼] para definir no valor nominal o valor que estiver gravado em seu bloco padrão de teste. Ex.: 792 HLD.

Pressione [ENTER] para finalizar a calibração.

- > Pressione [MENU ESC] para cancelar a calibração.
- > A faixa para calibração é de ±15HL.

6.12. Recarga da bateria

> O símbolo da bateria piscará se sua carga esgotar-se. O aparelho deve assim, ser recarregado assim que possível.

O aparelho permanecerá ligado automaticamente durante o recarregamento.
 Os símbolos

 e
 da bateria piscarão alternadamente, no qual quanto maior a parte preenchida, maior será a carga que já foi concluída.

> estará piscando após sua carga total ser concluída.

6.13. Luminosidade do LCD

> O display LCD é equipado com uma luz extra para facilitar o uso em ambientes com pouca luminosidade. Pode-se ligar ou desligar este dispositivo pressionando [\$] a qualquer momento quando o aparelho estiver em operação.

6.14. Desligamento automático

> O instrumento possui função de auto-desligamento para economizar energia da bateria.

> Se as medições ou qualquer tecla de operação não estiverem sendo executados dentro de 5 minutos, o aparelho desligará automaticamente, a tela LCD piscará por 20 segundos antes do desligamento como aviso. Nesse momento, qualquer tecla, exceto [Power], pode ser pressionada para cancelar a operação de desligamento.

> No caso da bateria apresentar baixa voltagem, será exibida a frase "Battery Empty!" e automaticamente o instrumento se desligará.

6.14. Substituição da bateria

Cinco baterias recarregáveis 1/2 AA Ni-H, conectadas em série, estão na unidade principal. A vida útil é de 3 anos em condições normais. O usuário pode substituir a bateria gasta conforme abaixo:

- > Desparafuse os 4 parafusos atrás da unidade principal.
- > Remova a tampa da bateria, puxe o plugue de energia e tire as baterias usadas.

> Instale as novas baterias, ligue a chave de energia para verificar se o aparelho está ou não em condições normais de operação.

> Coloque de volta a tampa e aperte os 4 parafusos.

6.14. Conexão do cabo de comunicação de dados

Deve ser inserido no soquete RS232 (no lado direito da unidade principal) um plugue pequeno 4-pin que está localizado no final do cabo de comunicação. A outra extremidade deve ser inserida no soquete serial atrás do PC (um plugue 9-pin tipo D).

7. Informação de falhas

Falha	Causa	Solução
Falha ao ligar	Bateria descarregada	Recarga
	Fusível na unidade queimado	Substituir o fusível1 na unidade
Falha no recarregamento	Fusível na unidade queimado	Substituir o fusível1 na unidade
	Bateria danificada	Substituir a bateria

> Nota 1: O tipo de fusível é 2A, ϕ 5×18.

8. Manutenção

8.1. Dispositivo de impacto

> Depois de usar o dispositivo de impacto por 1000-2000 vezes, utilize a escova de nylon (presente na maleta de acessórios) para limpar o tubo guia e o corpo de impacto do dispositivo. Para limpar o tubo guia, desparafuse o anel de apoio e tire o corpo de impacto, mova em espiral a escova de nylon sempre em direção anti-horária dentro do tubo guia. Quando a escova atingir o fundo, tire-a. Repita esta ação 5 vezes e recoloque o corpo de impacto e o anel de apoio.

> É expressamente proibido qualquer agente lubrificante para ser usado dentro do dispositivo de impacto.

8.2. Procedimentos padrões de manutenção

> Havendo desvios acima da tolerância do instrumento quando verificado fazendo a medição no bloco de teste Leeb HLD, pode-se efetuar a calibração eletrônica conforme seção 6.11.

> Depois de serem realizadas muitas medições com o instrumento (entre 3000~12000, dependendo da dureza do material medido) ocorrerá desgaste na esfera de teste e a mesma ficará com a parte inferior plana, acarretando em desvios na medição. Neste caso deve-se fazer a substituição da esfera, entrando em contato com nossa assistência técnica.

> Em caso de qualquer outra ocorrência, o durômetro deve ser devolvido a nossa empresa em período de garantia.

9. Transporte e Armazenamento

> O produto deve ser armazenado em temperatura normal e longe de vibração, forte campo magnético, agente corrosivo, umidade, pó, entre outros. O produto deve ser mantido na embalagem original (maleta).

10. Partes fora da garantia

- 1. Corpo do instrumento (riscos, quebras, trincas)
- 2. Tampa da impressora (quebra)
- 3. Painel (danos nas teclas por força excessiva)
- 4. Corpo de impacto e esfera (desgaste)
- 5. Anel de apoio (desgaste)
- 6. Cabo do dispositivo de impacto (rompimento do fio)
- 7. Fita de impressão
- 8. Bateria
- 9. Carregador da bateria